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We study the set of equilibrium states for quantum lattice states in the presence 
of a translation symmetry of the model. We derive a characterization of the 
spontaneous breaking of this symmetry, i.e., the decomposition of an invariant 
equilibrium state into a mixture of noninvariant equilibrium states, in terms of 
the separability in mean energy of these states for a class of perturbed dynamics. 
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1. I N T R O D U C T I O N  

There are several alternative methods of describing the states that occur in 
statistical mechanics. One of these methods is to identify the states as nor- 
malized positive linear functionals over a C* algebra of kinematic obser- 
vables 9.1. If we consider, in this context, a system on a lattice Z v, the group 
of space translactions Z ~ acts as a group of automorphisms {%, x E Z ~ } on 
the algebra 9.1 and therefore on the set of states. 

It has been established that the equilibrium states at a given tem- 
perature form a Choquet simplex, i.e., a convex set such that each element 
has a unique barycentric decomposition in terms of the extremal elements 
of the set. 

This decomposition appears to correspond to the physical separation 
of an equilibrium state into pure thermodynamic phases. 

The set of equilibrium states corresponding to a translationally 
invariant interaction is clearly globally invariant by space translations, and 
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therefore by a well-know fixed-point theorem the subset of invariant 
equilibrium states is nonempty. 

We are concerned with the problem of the decomposition of the 
(translation-) invariant equilibrium states into convex combinations of 
extremal equilibrium states, namely, under what conditions some trans- 
lation-invariant equilibrium state p is a mixture of translation-noninvariant 
extremal equilibrium states (pure thermodynamical phases). 

It is the general belief that this situation occurs if, under the influence 
of small perturbations, the system can leave the state p and arrive in an 
equilibrium situation which is not invariant under translations of the 
system. Then one says that the translational symmetry is broken. 

Our main result supports these ideas by showing that the translational 
symmetry is broken if and only if there exists a perturbation of the 
dynamics of a certain type which can change the energy density of the 
system (Theorem 4.2 below). The opposite situation is therefore the case in 
which translation invariance is very stable. 

If we take the example of the Ising ferromagnetic model, e.g., Ref. 1, 
for which it is known that in three dimmensions there are translation-non- 
invariant equilibrium states,(2~ it is known that the symmetry is not broken. 

From the geometrical point of view, broken symmetry is an extreme 
case, which, for instance, cannot appear in a finite-dimensional Choquet 
simplex. 

For  classical lattice systems in the case in which the set of translation- 
invariant equilibrium states reduces to one point, the same problem was 
considered in Ref. 3, but using a different approach. 

In a previous paper, (41 the authors considered a locally compact 
amenable group G, acting as affine homeomorphisms of a Choquet simplex 
A. Theorem 4.2 of Ref. 4 characterizes the extreme case where the set of 
fixed points of A by the action of G is a face of A, by the following stability 
condition: for all points ~o e A, all invariant means M on G and all con- 
tinuous functions f on A we have 

M(If(co) - f ( ~ g c o ) ] )  = 0 

where ~g denotes the action of g ~ G on A. 
Here we give an application of this result in the case where the simplex 

A is the set of equilibrium states of a quantum lattice system on Z ~. 
Recall (Ref. 6), that for such a model one associates to each finite 

region X of Z ~ the algebra of all bounded linear operators on a finite-dim- 
mensional Hilbert space ~f~(X) and the algebra of all observables is then 
defined by 

X ~  Z v 
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The group of lattice translations Z v acts as a group of automorphisms 
of 9.I and we denote this action by 

A ~ 9 . 1 ( X ) - . . c x A ~ 9 . 1 ( X + x ) ,  x E Z  ~ 

In this context an invariant interaction is a function q~ from the set of 
finite subsets of Z ~ to the Hermitian elements of 9.i, such that 

~ ( X ) a  ~ ( Y )  and @ ( X + x )  = V x @ ( Y )  

We consider interactions for which the dynamics is well defined and in 
that case the set of equilibrium states at a given temperature, defined for 
instance via the Kubo, Martin, Schwinger condition, is a Choquet simplex. 

In what follows a mean on Z ~ should be interpreted as a normalized 
linear functional on the C* algebra of all bounded complex-valued 
functions on Z ~, equipped with the sup norm ]rfl[ ~. 

A mean M on Z ~ is invariant if M ( f )  = M ( x f ) ,  x e Z ~ where 

x f ( a ) = f ( a - x ) ,  a e Z  ~ 

and it is extremal invariant if it is an extreme point of the convex set of 
invariant means. 

2. UNIFORMLY AVERAGEABLE INTERACTIONS 

In this section we introduce interactions which are not invariant for 
translations. 

An interaction ~b of the infinite lattice system is called uniformly finite 
range if there exists a finite subset A of Z ~ such that for any finite 
X c Z ~, @ ( X ) = 0  implies X c A + x for some x e Z ~ 

Denote by ~40 the space of all interactions q~ which are uniformly finite 
range and for which 

II,~ll=sup Z H~(X)II 
~ ~  x ~  N ( X )  

(2.1) 

is finite. 
(2.1) is a norm on ~r The completion d of d 0 for this norm is a 

Banach space of interactions. ~ is defined as the subspace of d containing 
the interactions which are invariant for translations. 
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For  any @ e d ,  for any x e Z ~ the energy at the point x is defined by 

@(x) (2.2) 
A~= ~ U(x) 

X ~ x  

In this way the energy per point is an observable in the C* algebra. 
In the following we will have to take limits on increasing subsets of Z t  

Consider a sequence (A , )n~  of finite subsets of Z ~ satisfying, for any 
X E Z v, 

N(A, A(A, + x)) 
lim converges to zero (2.3) 

, ~ co N(A,) 

[A is the symmetric difference, N(A) is the number  of points in A.] 
Any time we write down limA ~ ~ we mean lim, ~ oo for any sequence 

(An)n satisfying (2.3) and the limit point is independent of this sequence. 

Remark. This is equivalent to the limit in the sense of van Hove. 

We introduce the following: 

D e f i n i t i o n  2.1. A bounded real function f on Z ~ is uniformly 
averageable if there exists a constant m(f) such that the limit 

1 
re(f )=lira ~ E x f  

x E A  

converges uniformly on Z". [ x f  is the function on Z ~ defined by 
xf(Y) = f (Y  - x )  for any y E Z~ 

In particular m(f)  belongs to the closed convex hull of the set 
{ J ,  x ~ Z~ Hence for any invariant mean M on Z ~ one has M ( f ) =  m(f). 

Rornark. Clearly g ( x ) = f ( x ) - m ( f )  has asymptotically vanishing 
average in the following sense: 

1 ~-~ x) lim sup ~ g( y - = 0 
A ~ o o  y x 

D e f i n i t i o n  2.2. An interaction @ e J  is uniformly averageable if 
for any finite subset X of Z ~ there exists a uniformly averageable function 
f x  on Z ~ such that 

q~(X+ x) =fX(x) ~x@(X) for any x e Z ~ 

Denote by d A the class of uniformly averageable interactions. Notice 
that ~ c d ~. Furthermore d A is a Banach subspace of d because the set 
of uniformly averageable functions on Z ~ is uniformly closed. 
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Theorem 2.3. Let 65 e d A. Let co be a translation invariant state 
on 9.I. Then the following holds: (a) The function xeZ~ is 
uniformly averageable; (b) the limit 

exists and 

Hence 

Proot 

+ +(x)) 

e+(eJ) = rn(x~-+ co(A~)) 

(a) Notice that 

A;=Sx 65(x)-N-~ ~o 65(X+X)_N(X) ~oN(X f~(X)rx65(x) 

X X 
co(Ag) = ~ f~ (x )  ~o(65(X)) (2.4) 

x+ o N(X) 

Suppose first that 65 is uniformly finite range. Then the function 
x e Zo~-+~o(A~) is a finite sum of uniformly averageable functions on Z ~, 
hence itself is uniformly averageable. 

Because the uniformly finite range interactions are dense in d A and 
because the space of uniformly averageable functions on Z ~ is closed (a) 
follows for arbitrary r e d A. 

(b) Again it is enough to prove (b) in the case in which 65 is 
uniformly finite range�9 Let e > 0. Let A ~ Z v. Put 

Suppose 

Then 

This shows 

HA(q))= ~ ~(x) 
X~A 

N(A A(A + x)) 
N(A) 

< e  for any x c A  o 

1 HA(65)-- ~ Ag < N(Ao)el[651p (2.5) 
N(A) 

x E A  

�9 1 A ~  hm N--~ HA(65) - -  2 = 0 (2.6) 
x u A  

Hence (b) follows from (a). | 

822/39/l-2-tl 
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3. S T A T E S  S E P A R A T E D  IN M E A N  

Two translation-invariant states on 9.1 can be separated by the energy 
density functional e~ for some interaction q~ in ~.  The aim of this section is 
to prove results of this kind for states which are not invariant under trans- 
lations using the classes sr and sr of interactions. 

The main result of this section is the following: 

T h e o r e m  3.1. Let ~ and co 2 be states on 9J. Let M be an 
extremally invariant mean on Z ~. The following are equivalent: (a) for any 
A~gA 

M(x  ~ Z ~ ~-~ l~l(rxA) - co2('CxA )l 2) = 0 (3.1) 

(b) [resp. (c)] for any ~ a  J2~ A (resp. ~ e d )  the following energy 
densities are equal: 

v b . . ~  x _ _  M ( x ~ Z  col(A~))-M(x~Z~ (3.2) 

Proof: 

(a) ~ (c) 

Let ~ c d and let A be a finite subset of Z". Let (u~)~/be matrix units 
for the C* algebra N(A). Define functions f~ on Z" by 

~ ( A + x ) = ~ f , j ( x ) ~ u i j  for any x E Z  ~ 

The functions f0. are bounded by Ilq~][. Hence 

IM(x~-~ (e), - c%)( qb(A + x))[ ~< ~ [M(x~- -+ f , y ( X ) ( O  1 - -  co2)('CxUU) I 

~< I1~11 ~ M(xF--~ [(col -- co2)(mxu,:)l 2) '/2 
i ]  

which equals zero by condition a). Hence: 

M(xF--~co~(~(A + x)) = M(x~---~co2(qS(A + x)) (3.3) 

for any finite subset A of Z ~. 
Suppose first q~ is uniformly finite range. There exists a finite subset Ao 

of Z ~ such that 

A ~ =  ~ qs(X+ x) for any x ~ Z  ~ 
O ~ X ~ A o  
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Then (3.3) implies (3.2). Because the uniformly finite range interac- 
tions are dense in d ,  (3.2) follows for abitrary q5 e ~ .  

(c) ~ (b) is trivial. 

Essential in the proof of (b) ~ (a) is the following: 

L e m m a  3.2. Let A be a self-adjoint element of some local algebra 
9,I(A). Let f be an uniformly averageable function on Z ~. Let y ~ T \ A .  
There exists a 4~ e ~4 A such that 

A~ +-v = f ( x )  zxA (3.4) 

for any x ~ Z ~. 

Proof. Define an interaction q5 by 

cb(A + x ) =  - N ( A ) f ( x )  rxA,  x e Z ~ 

q S ( A u { y } + x ) = [ N ( A ) + l ] f ( x ) r x A ,  x e Z  ~ (3.5) 

q~(X) = 0, otherwise 

Then q5 ~ s~r A and ~ satisfies (3.4). | 

Proo f  o f  (b)  ~ (o) in Theorem 3.7. It is enough to prove (3.1) for 
any self-adjoint element A of any local algebra 9,1(A). 

Let f be a uniformly averageable function on Z '). Take y ~ Z'~\A. 
Let ~ be the interaction constructed in Lemma 3.2. Then condition 

(b) of the theorem yields 

M ( x  e Z ~ F---~ f (x ) (co ,  - c%)(A;)) = 0 (3.6) 

Denote g ( x ) =  (co 1 -(.o2)(A~) for any x ~ Z ~ Then g is a bounded function 
on Z ~ Let z E Z ~ Take f = g - ,g. Then f is uniformly averageable. 

By (3.6) one obtains M ( ( g - z g ) g ) = 0 .  Or 

M ( g . z g  ) = M ( g  2) for any z E Z ~ (3.7) 

It has been proved in Ref. 4 that this implies M(g  2) = m (g )  2. 
But taking f constant in (3.6) it follows that M ( g ) = 0 .  Hence 

M ( g  2) =0.  This exactly is equation (3.1). I 

Corollary 3.3. Let co and p be states on 91. Suppose p is invariant 
under translations. Let M be an extremally invariant mean on Z ~ The 
following are equivalent: (a) For  any A ~ ~2t 

M ( x  ~ Z ~ ~ le)(rxA) -- p(A )[ 2) = 0 (3.8)  
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(b) For  any ~ E d  A 

ee(p) = M(x  ~ co(A~)) 

Proof. This follows from the theorems 2.3 and 3.1. 

(3.9) 

4. S Y M M E T R Y  B R E A K D O W N  

Now we came to the main point of our paper. By Theorem 4.2, below, 
any translation-invariant equilibrium state cannot be a mixture of trans- 
lation noninvariant equilibrium states if and only if for any equilibrium 
state, there is a translation-invariant equilibrium state which cannot be 
separated in mean energy by any uniformly averageable potential. 

In order to make the connection with Ref. 4, since Theorem 4.2 of 
Ref. 4 will be used in what follows, we recall the following definition: 

Def ini t ion  4.1. A convex subset F of A is a face of A if for any 
p~F,  cot,co2~A, 2 e l 0 , 1 [  such that p = 2 c o l + ( 1 - 2 ) c o 2  one has 
COl, CO2 f f F  (see Ref. 8). 

From the above it is clear that the absence of spontaneous symmetry 
breakdown is equivalent to the fact that A1, the convex subset of the Z v- 
invariant equilibrium states, is a face of A, the Choquet simplex of all 
equilibrium states. 

T h e o r e m  4.2. Let A, A; be as above. The following equivalent: 

(a) A; is a face of 3. 

(b) For  any state co in A and for any extremally invariant mean M 
on Z ~ there exists a state p e At for which 

M(x~--~lco(%A)-p(A)12)=O, Aeg.I (4.1) 

(c) For  any state co in 3 and for any invariant mean M on Z ~ there 
exists a state p eA~ such that for any interaction ~ e d  A, the following 
energy densities are equal: 

ee(p) = M(x  ~ Z ~ ~ co(A~)) (4.2) 

Proof. Let M be an invariant mean on Z ~ The state p in conditions 
(b) and (c) is uniquely determined by p(A)=M(x~-~co(zxA))  for any 
A e 9.1. Equation (4.1) now can be reformulated: 

M(x~-~ [co(zxA)l 2) = IM(xF--~co(zxA)] 2 (4.3) 

for any A e 9.[. 
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The equivalence of (a) and (b) now follows from Ref. 4, Theorem 4.2 
(see the Introduction for the statement of this Theorem). 

The equivalence of (b) and (c) follows from Corollary 3.3. Notice that 
Eq. (4.2) is affine in the mean M so that it holds for any invariant mean if 
it holds for any extremally invariant mean. | 
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